Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(7): 1711-1723, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348474

RESUMO

Polypeptides often self-assemble to form amyloid fibrils, which contain cross-ß structural motifs and are typically 5-15 nm in width and micrometers in length. In many cases, short segments of longer amyloid-forming protein or peptide sequences also form cross-ß assemblies but with distinctive ribbon-like morphologies that are characterized by a well-defined thickness (on the order of 5 nm) in one lateral dimension and a variable width (typically 10-100 nm) in the other. Here, we use a novel combination of data from solid-state nuclear magnetic resonance (ssNMR), dark-field transmission electron microscopy (TEM), atomic force microscopy (AFM), and cryogenic electron microscopy (cryoEM) to investigate the structures within amyloid ribbons formed by residues 14-23 and residues 11-25 of the Alzheimer's disease-associated amyloid-ß peptide (Aß14-23 and Aß11-25). The ssNMR data indicate antiparallel ß-sheets with specific registries of intermolecular hydrogen bonds. Mass-per-area values are derived from dark-field TEM data. The ribbon thickness is determined from AFM images. For Aß14-23 ribbons, averaged cryoEM images show a periodic spacing of ß-sheets. The combined data support structures in which the amyloid ribbon growth direction is the direction of intermolecular hydrogen bonds between ß-strands, the ribbon thickness corresponds to the width of one ß-sheet (i.e., approximately the length of one molecule), and the variable ribbon width is a variable multiple of the thickness of one ß-sheet (i.e., a multiple of the repeat distance in a stack of ß-sheets). This architecture for a cross-ß assembly may generally exist within amyloid ribbons.


Assuntos
Amiloide , Elétrons , Microscopia de Força Atômica , Estrutura Secundária de Proteína , Ressonância Magnética Nuclear Biomolecular/métodos , Amiloide/química , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/química
2.
J Magn Reson ; 342: 107285, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35998398

RESUMO

We review recent efforts to develop and apply an experimental approach to the structural characterization of transient intermediate states in biomolecular processes that involve large changes in molecular conformation or assembly state. This approach depends on solid state nuclear magnetic resonance (ssNMR) measurements that are performed at very low temperatures, typically 25-30 K, with signal enhancements from dynamic nuclear polarization (DNP). This approach also involves novel technology for initiating the process of interest, either by rapid mixing of two solutions or by a rapid inverse temperature jump, and for rapid freezing to trap intermediate states. Initiation by rapid mixing or an inverse temperature jump can be accomplished in approximately-one millisecond. Freezing can be accomplished in approximately 100 microseconds. Thus, millisecond time resolution can be achieved. Recent applications to the process by which the biologically essential calcium sensor protein calmodulin forms a complex with one of its target proteins and the process by which the bee venom peptide melittin converts from an unstructured monomeric state to a helical, tetrameric state after a rapid change in pH or temperature are described briefly. Future applications of millisecond time-resolved ssNMR are also discussed briefly.


Assuntos
Peptídeos , Proteínas , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Proteínas/química
3.
J Struct Biol ; 213(2): 107736, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831509

RESUMO

Cryogenic electron microscopy (cryo-EM) is an important tool for determining the molecular structure of proteins and protein assemblies, including helical assemblies such as amyloid fibrils. In reconstruction of amyloid fibril structures from cryo-EM images, an important early step is the selection of fibril locations. This fibril picking step is typically done by hand, a tedious process when thousands of images need to be analyzed. Here we present a computer program called FibrilFinder that identifies the locations and directions of fibril segments in cryo-EM images, by using the properties that the fibrils should be linear objects and have widths within a specified range. The program outputs the fibril locations in text files compatible with the RELION density reconstruction program. After RELION is used to extract the particle image boxes contained in the fibril segments identified by FibrilFinder, a second program called FibrilFixer removes boxes that contain more than one fibril, for instance because two fibrils cross each other. As concrete and realistic examples, we describe the application of the two programs to cryo-EM images of two different amyloid fibrils, namely 40-residue amyloid-ß fibrils derived from human brain tissue by seeded growth and fibrils formed by the C-terminal half of the low-complexity domain of the RNA-binding protein FUS. Both examples of amyloid fibrils can be picked from cryo-EM images using the same set of FibrilFinder and FibrilFixer parameters, showing that this software does not require re-optimization for each sample. A set of 1337 cryo-EM images was analyzed in 17 min with one multi-core computer. The new fibril picking software should enable the rapid analysis and comparison of more helical structures using cryo-EM, and perhaps serve as part of the greater automation of the entire structure determination process.


Assuntos
Amiloide/química , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/química , Microscopia Crioeletrônica/instrumentação , Humanos , Fragmentos de Peptídeos/química , Proteína FUS de Ligação a RNA/química , Razão Sinal-Ruído , Software , Fatores de Tempo
4.
Nat Commun ; 11(1): 5735, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184287

RESUMO

Protein domains without the usual distribution of amino acids, called low complexity (LC) domains, can be prone to self-assembly into amyloid-like fibrils. Self-assembly of LC domains that are nearly devoid of hydrophobic residues, such as the 214-residue LC domain of the RNA-binding protein FUS, is particularly intriguing from the biophysical perspective and is biomedically relevant due to its occurrence within neurons in amyotrophic lateral sclerosis, frontotemporal dementia, and other neurodegenerative diseases. We report a high-resolution molecular structural model for fibrils formed by the C-terminal half of the FUS LC domain (FUS-LC-C, residues 111-214), based on a density map with 2.62 Å resolution from cryo-electron microscopy (cryo-EM). In the FUS-LC-C fibril core, residues 112-150 adopt U-shaped conformations and form two subunits with in-register, parallel cross-ß structures, arranged with quasi-21 symmetry. All-atom molecular dynamics simulations indicate that the FUS-LC-C fibril core is stabilized by a plethora of hydrogen bonds involving sidechains of Gln, Asn, Ser, and Tyr residues, both along and transverse to the fibril growth direction, including diverse sidechain-to-backbone, sidechain-to-sidechain, and sidechain-to-water interactions. Nuclear magnetic resonance measurements additionally show that portions of disordered residues 151-214 remain highly dynamic in FUS-LC-C fibrils and that fibrils formed by the N-terminal half of the FUS LC domain (FUS-LC-N, residues 2-108) have the same core structure as fibrils formed by the full-length LC domain. These results contribute to our understanding of the molecular structural basis for amyloid formation by FUS and by LC domains in general.


Assuntos
Amiloide/química , Amiloide/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , Amiloide/genética , Amiloide/ultraestrutura , Microscopia Crioeletrônica , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/ultraestrutura , Análise de Sequência de Proteína
5.
Proc Natl Acad Sci U S A ; 117(19): 10286-10293, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341150

RESUMO

HIV-1 maturation involves conversion of the immature Gag polyprotein lattice, which lines the inner surface of the viral membrane, to the mature capsid protein (CA) lattice, which encloses the viral RNA. Maturation inhibitors such as bevirimat (BVM) bind within six-helix bundles, formed by a segment that spans the junction between the CA and spacer peptide 1 (SP1) subunits of Gag, and interfere with cleavage between CA and SP1 catalyzed by the HIV-1 protease (PR). We report solid-state NMR (ssNMR) measurements on spherical virus-like particles (VLPs), facilitated by segmental isotopic labeling, that provide information about effects of BVM on the structure and dynamics of CA-SP1 junction helices in the immature lattice. Although BVM strongly blocks PR-catalyzed CA-SP1 cleavage in VLPs and blocks conversion of VLPs to tubular CA assemblies, 15N and 13C ssNMR chemical shifts of segmentally labeled VLPs with and without BVM are very similar, indicating that interaction with BVM does not alter the six-helix bundle structure appreciably. Only the 15N chemical shift of A280 (the first residue of SP1) changes significantly, consistent with BVM binding to an internal ring of hydrophobic side chains of L279 residues. Measurements of transverse 15N spin relaxation rates reveal a reduction in the amplitudes and/or timescales of backbone N-H bond motions, corresponding to a rigidification of the six-helix bundles. Overall, our data show that inhibition of HIV-1 maturation by BVM involves changes in structure and dynamics that are surprisingly subtle, but still sufficient to produce a large effect on CA-SP1 cleavage.


Assuntos
Proteínas do Capsídeo/química , HIV-1/efeitos dos fármacos , Fragmentos de Peptídeos/química , Succinatos/farmacologia , Triterpenos/farmacologia , Vírion/efeitos dos fármacos , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Fármacos Anti-HIV/farmacologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Vírion/genética , Vírion/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
6.
Biochemistry ; 59(4): 364-378, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31895552

RESUMO

In aqueous solutions, the 214-residue low-complexity domain of the FUS protein (FUS-LC) is known to undergo liquid-liquid phase separation and also to self-assemble into amyloid-like fibrils. In previous work based on solid state nuclear magnetic resonance (ssNMR) methods, a structural model for the FUS-LC fibril core was developed, showing that residues 39-95 form the fibril core. Unlike fibrils formed by amyloid-ß peptides, α-synuclein, and other amyloid-forming proteins, the FUS-LC core is largely devoid of purely hydrophobic amino acid side chains. Instead, the core-forming segment contains numerous hydroxyl-bearing residues, including 18 serines, six threonines, and eight tyrosines, suggesting that the FUS-LC fibril structure may be stabilized in part by inter-residue hydrogen bonds among side chain hydroxyl groups. Here we describe ssNMR measurements, performed on 2H,15N,13C-labeled FUS-LC fibrils, that provide new information about the interactions of hydroxyl-bearing residues with one another and with water. The ssNMR data support the involvement of specific serine, threonine, and tyrosine residues in hydrogen-bonding interactions. The data also reveal differences in hydrogen exchange rates with water for different side chain hydroxyl groups, providing information about solvent exposure and penetration of water into the FUS-LC fibril core.


Assuntos
Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/ultraestrutura , Sequência de Aminoácidos/genética , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Hidrogênio/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína/fisiologia , Proteína FUS de Ligação a RNA/genética
7.
Cell ; 171(3): 615-627.e16, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28942918

RESUMO

Polymerization and phase separation of proteins containing low-complexity (LC) domains are important factors in gene expression, mRNA processing and trafficking, and localization of translation. We have used solid-state nuclear magnetic resonance methods to characterize the molecular structure of self-assembling fibrils formed by the LC domain of the fused in sarcoma (FUS) RNA-binding protein. From the 214-residue LC domain of FUS (FUS-LC), a segment of only 57 residues forms the fibril core, while other segments remain dynamically disordered. Unlike pathogenic amyloid fibrils, FUS-LC fibrils lack hydrophobic interactions within the core and are not polymorphic at the molecular structural level. Phosphorylation of core-forming residues by DNA-dependent protein kinase blocks binding of soluble FUS-LC to FUS-LC hydrogels and dissolves phase-separated, liquid-like FUS-LC droplets. These studies offer a structural basis for understanding LC domain self-assembly, phase separation, and regulation by post-translational modification.


Assuntos
Proteína FUS de Ligação a RNA/química , Sequência de Aminoácidos , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Domínios Proteicos , Proteína FUS de Ligação a RNA/metabolismo
8.
J Am Chem Soc ; 138(37): 12029-32, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27593947

RESUMO

Maturation of HIV-1 requires disassembly of the Gag polyprotein lattice, which lines the viral membrane in the immature state, and subsequent assembly of the mature capsid protein lattice, which encloses viral RNA in the mature state. Metastability of the immature lattice has been proposed to depend on the existence of a structurally ordered, α-helical segment spanning the junction between capsid (CA) and spacer peptide 1 (SP1) subunits of Gag, a segment that is dynamically disordered in the mature capsid lattice. We report solid state nuclear magnetic resonance (ssNMR) measurements on the immature lattice in noncrystalline, spherical virus-like particles (VLPs) derived from Gag. The ssNMR data provide definitive evidence for this critical α-helical segment in the VLPs. Differences in ssNMR chemical shifts and signal intensities between immature and mature lattice assemblies also support a major rearrangement of intermolecular interactions in the maturation process, consistent with recent models from electron cryomicroscopy and X-ray crystallography.


Assuntos
Proteínas do Capsídeo/química , HIV-1/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Montagem de Vírus/fisiologia , Modelos Moleculares , Conformação Proteica
9.
Proc Natl Acad Sci U S A ; 112(32): 9816-21, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216960

RESUMO

Most, if not all, peptide- and protein-based hydrogels formed by self-assembly can be characterized as kinetically trapped 3D networks of fibrils. The propensity of disease-associated amyloid-forming peptides and proteins to assemble into polymorphic fibrils suggests that cross-ß fibrils comprising hydrogels may also be polymorphic. We use solid-state NMR to determine the molecular and supramolecular structure of MAX1, a de novo designed gel-forming peptide, in its fibrillar state. We find that MAX1 adopts a ß-hairpin conformation and self-assembles with high fidelity into a double-layered cross-ß structure. Hairpins assemble with an in-register Syn orientation within each ß-sheet layer and with an Anti orientation between layers. Surprisingly, although the MAX1 fibril network is kinetically trapped, solid-state NMR data show that fibrils within this network are monomorphic and most likely represent the thermodynamic ground state. Intermolecular interactions not available in alternative structural arrangements apparently dictate this monomorphic behavior.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Modelos Moleculares , Peptídeos/química , Marcação por Isótopo , Cinética , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína
10.
Acc Chem Res ; 46(7): 1487-96, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23294335

RESUMO

Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue ß-amyloid (Aß1₋40) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel ß-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel ß-sheet organization found in ß-amyloid fibrils also occurs in many other fibril-forming systems. We attribute this common structural motif to the stabilization of amyloid structures by intermolecular interactions among like amino acids, including hydrophobic interactions and polar zippers. Surprisingly, we have recently identified and characterized antiparallel ß-sheets in certain fibrils that are formed by the D23N mutant of Aß1₋40, a mutant that is associated with early-onset, familial neurodegenerative disease. Antiparallel D23N-Aß1₋40 fibrils are metastable with respect to parallel structures and, therefore, represent an off-pathway intermediate in the amyloid fibril formation process. Other methods have recently produced additional evidence for antiparallel ß-sheets in other amyloid-formation intermediates. As an alternative to simple parallel and antiparallel ß-sheet structures, researchers have proposed ß-helical structural models for some fibrils, especially those formed by mammalian and fungal prion proteins. Solid state NMR and EPR data show that fibrils formed in vitro by recombinant PrP have in-register parallel ß-sheet structures. However, the structure of infectious PrP aggregates is not yet known. The fungal HET-s prion protein has been shown to contain a ß-helical structure. However, all yeast prions studied by solid state NMR (Sup35p, Ure2p, and Rnq1p) have in-register parallel ß-sheet structures, with their Gln- and Asn-rich N-terminal segments forming the fibril core.


Assuntos
Amiloide/química , Consenso , Príons/química , Multimerização Proteica , Animais , Humanos , Estrutura Secundária de Proteína
11.
Biophys J ; 101(9): 2242-50, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22067164

RESUMO

Although amyloid fibrils are generally considered to be causative or contributing agents in amyloid diseases, several amyloid fibrils are also believed to have biological functions. Among these are fibrils formed by Pmel17 within melanosomes, which act as a template for melanin deposition. We use solid-state NMR to show that the molecular structures of fibrils formed by the 130-residue pseudo-repeat domain Pmel17:RPT are polymorphic even within the biologically relevant pH range. Thus, biological function in amyloid fibrils does not necessarily imply a unique molecular structure. Solid-state NMR spectra of three Pmel17:RPT polymorphs show that in all cases, only a subset (~30%) of the full amino acid sequence contributes to the immobilized fibril core. Although the repetitive nature of the sequence and incomplete spectral resolution prevent the determination of unique chemical shift assignments from two- and three-dimensional solid-state NMR spectra, we use a Monte Carlo assignment algorithm to identify protein segments that are present in or absent from the fibril core. The results show that the identity of the core-forming segments varies from one polymorph to another, a phenomenon known as segmental polymorphism.


Assuntos
Amiloide/química , Conformação Molecular , Sequência de Aminoácidos , Amiloide/ultraestrutura , Simulação por Computador , Ácido Glutâmico/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Método de Monte Carlo , Testes de Neutralização , Antígeno gp100 de Melanoma/química
12.
Biophys J ; 101(10): 2485-92, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22098747

RESUMO

Transthyretin (TTR) is a largely ß-sheet serum protein responsible for transporting thyroxine and vitamin A. TTR is found in amyloid deposits of patients with senile systemic amyloidosis. TTR mutants lead to familial amyloidotic polyneuropathy and familial amyloid cardiomyopathy, with an earlier age of onset. Studies of amyloid fibrils of familial amyloidotic polyneuropathy mutant TTR suggest a structure similar to the native state with only a simple opening of a ß-strand-loop-strand region exposing the two main ß-sheets of the protein for fibril elongation. However, we find that the wild-type TTR sequence forms amyloid fibrils that are considerably different from the previously suggested amyloid structure. Using protease digestion with mass spectrometry, we observe the amyloid core to be primarily composed of the C-terminal region, starting around residue 50. Solid-state NMR measurements prove that TTR differs from other pathological amyloids in not having an in-register parallel ß-sheet architecture. We also find that the TTR amyloid is incapable of binding thyroxine as monitored by either isothermal calorimetry or 1,8-anilinonaphthalene sulfonate competition. Taken together, our experiments are consistent with a significantly different configuration of the ß-sheets compared to the previously suggested structure.


Assuntos
Amiloide/química , Pré-Albumina/química , Amiloide/ultraestrutura , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Pré-Albumina/ultraestrutura , Ligação Proteica , Estrutura Secundária de Proteína , Tiroxina/metabolismo
13.
J Am Chem Soc ; 133(11): 4018-29, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21355554

RESUMO

Structural variations in ß-amyloid fibrils are potentially important to the toxicity of these fibrils in Alzheimer's disease (AD). We describe a repeated seeding protocol that selects a homogeneous fibril structure from a polymorphic initial state in the case of 40-residue ß-amyloid fibrils with the Asp23-to-Asn, or Iowa, mutation (D23N-Aß(1-40)). We use thioflavin T (ThT) fluorescence, transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (NMR) to track the evolution of fibril structure through multiple generations under this protocol. The data show that (i) repeated seeding selectively amplifies a single D23N-Aß(1-40) fibril structure that can be a minor component of the initial polymorphic state; (ii) the final structure is highly sensitive to growth conditions, including pH, temperature, and agitation; (iii) although the initial state can include fibrils that contain both antiparallel and parallel ß-sheets, the final structures contain only parallel ß-sheets, suggesting that antiparallel ß-sheet structures are thermodynamically and kinetically metastable. Additionally, our data demonstrate that ThT fluorescence enhancements, which are commonly used to monitor amyloid fibril formation, vary strongly with structural variations, even among fibrils comprised of the same polypeptide. Finally, we present a simple mathematical model that describes the structural evolution of fibril samples under repeated seeding.


Assuntos
Peptídeos beta-Amiloides/genética , Mutação , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Benzotiazóis , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Espectrometria de Fluorescência , Termodinâmica , Tiazóis
14.
J Biol Chem ; 286(10): 8385-8393, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21148556

RESUMO

Most amyloids are pathological, but fragments of Pmel17 form a functional amyloid in vertebrate melanosomes essential for melanin synthesis and deposition. We previously reported that only at the mildly acidic pH (4-5.5) typical of melanosomes, the repeat domain (RPT) of human Pmel17 can form amyloid in vitro. Combined with the known presence of RPT in the melanosome filaments and the requirement of this domain for filament formation, we proposed that RPT may be the core of the amyloid formed in vivo. Although most of Pmel17 is highly conserved across a broad range of vertebrates, the RPT domains vary dramatically, with no apparent homology in some cases. Here, we report that the RPT domains of mouse and zebrafish, as well as a small splice variant of human Pmel17, all form amyloid specifically at mildly acid pH (pH ∼5.0). Protease digestion, mass per unit length measurements, and solid-state NMR experiments suggest that amyloid of the mouse RPT has an in-register parallel ß-sheet architecture with two RPT molecules per layer, similar to amyloid of the Aß peptide. Although there is no sequence conservation between human and zebrafish RPT, amyloid formation at acid pH is conserved.


Assuntos
Amiloide/metabolismo , Antígeno gp100 de Melanoma/metabolismo , Amiloide/química , Amiloide/genética , Animais , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Antígeno gp100 de Melanoma/química , Antígeno gp100 de Melanoma/genética
15.
J Biol Chem ; 285(14): 10806-21, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20106984

RESUMO

Insulin fibrillation provides a model for a broad class of amyloidogenic diseases. Conformational distortion of the native monomer leads to aggregation-coupled misfolding. Whereas beta-cells are protected from proteotoxicity by hexamer assembly, fibrillation limits the storage and use of insulin at elevated temperatures. Here, we have investigated conformational distortions of an engineered insulin monomer in relation to the structure of an insulin fibril. Anomalous (13)C NMR chemical shifts and rapid (15)N-detected (1)H-(2)H amide-proton exchange were observed in one of the three classical alpha-helices (residues A1-A8) of the hormone, suggesting a conformational equilibrium between locally folded and unfolded A-chain segments. Whereas hexamer assembly resolves these anomalies in accordance with its protective role, solid-state (13)C NMR studies suggest that the A-chain segment participates in a fibril-specific beta-sheet. Accordingly, we investigated whether helicogenic substitutions in the A1-A8 segment might delay fibrillation. Simultaneous substitution of three beta-branched residues (Ile(A2) --> Leu, Val(A3) --> Leu, and Thr(A8) --> His) yielded an analog with reduced thermodynamic stability but marked resistance to fibrillation. Whereas amide-proton exchange in the A1-A8 segment remained rapid, (13)Calpha chemical shifts exhibited a more helical pattern. This analog is essentially without activity, however, as Ile(A2) and Val(A3) define conserved receptor contacts. To obtain active analogs, substitutions were restricted to A8. These analogs exhibit high receptor-binding affinity; representative potency in a rodent model of diabetes mellitus was similar to wild-type insulin. Although (13)Calpha chemical shifts remain anomalous, significant protection from fibrillation is retained. Together, our studies define an "Achilles' heel" in a globular protein whose repair may enhance the stability of pharmaceutical formulations and broaden their therapeutic deployment in the developing world.


Assuntos
Amiloide/química , Diabetes Mellitus Experimental/metabolismo , Desenho de Fármacos , Insulina/química , Insulina/farmacologia , Amiloide/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Cristalografia por Raios X , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Secundária de Proteína , Ratos , Ratos Endogâmicos Lew , Receptor IGF Tipo 1/metabolismo , Estreptozocina/toxicidade
16.
J Chem Phys ; 131(4): 045101, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19655922

RESUMO

We describe a method for measuring magnetic dipole-dipole interactions, and hence distances, between pairs of like nuclear spins in a many-spin system under magic-angle spinning (MAS). This method employs a homonuclear dipolar recoupling sequence that creates an average dipole-dipole coupling Hamiltonian under MAS with full zero-quantum symmetry, including both secular and flip-flop terms. Flip-flop terms are then attenuated by inserting rotor-synchronized periods of chemical shift evolution between recoupling blocks, leaving an effective Hamiltonian that contains only secular terms to a good approximation. Couplings between specific pairs of nuclear spins can then be selected with frequency-selective pi pulses. We demonstrate this technique, which we call zero-quantum shift evolution assisted homonuclear recoupling, in a series of one-dimensional and two-dimensional (13)C NMR experiments at 17.6 T and 40.00 kHz MAS frequency on uniformly (13)C-labeled L-threonine powder and on the helix-forming peptide MB(i+4)EK, synthesized with a pair of uniformly (13)C-labeled L-alanine residues. Experimental demonstrations include measurements of distances between (13)C sites that are separated by three bonds, placing quantitative constraints on both sidechain and backbone torsion angles in polypeptides.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Teoria Quântica , Treonina/química
17.
J Mol Biol ; 392(4): 1055-73, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19647001

RESUMO

Solid-state nuclear magnetic resonance (NMR) techniques are used to investigate the structure of the 35-residue villin headpiece subdomain (HP35) in folded, partially denatured, and fully denatured states. Experiments are carried out in frozen glycerol/water solutions, with chemical denaturation by guanidine hydrochloride (GdnHCl). Without GdnHCl, two-dimensional solid-state (13)C NMR spectra of samples prepared with uniform (13)C labeling of selected residues show relatively sharp cross-peaks at chemical shifts that are consistent with the known three-helix bundle structure of folded HP35. At high GdnHCl concentrations, most cross-peaks broaden and shift, qualitatively indicating disruption of the folded structure and development of static conformational disorder in the frozen denatured state. Conformational distributions at one residue in each helical segment are probed quantitatively with three solid-state NMR techniques that provide independent constraints on backbone varphi and psi torsion angles in samples with sequential pairs of carbonyl (13)C labels. Without GdnHCl, the combined data are well fit by alpha-helical conformations. At [GdnHCl]=4.5 M, corresponding to the approximate denaturation midpoint, the combined data are well fit by a combination of alpha-helical and partially extended conformations at each site, but with a site-dependent population ratio. At [GdnHCl]=7.0 M, corresponding to the fully denatured state, the combined data are well fit by a combination of partially extended and polyproline II conformations, again with a site-dependent population ratio. Two entirely different models for conformational distributions lead to nearly the same best-fit distributions, demonstrating the robustness of these conclusions. This work represents the first quantitative investigation of site-specific conformational distributions in partially folded and unfolded states of a protein by solid-state NMR.


Assuntos
Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/química , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Sequência de Aminoácidos , Simulação por Computador , Congelamento , Modelos Moleculares , Distribuição Normal , Ressonância Magnética Nuclear Biomolecular/métodos , Fragmentos de Peptídeos/química , Desnaturação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia
18.
Biochemistry ; 48(26): 6072-84, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19358576

RESUMO

Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Mutação de Sentido Incorreto , Amiloide/ultraestrutura , Neuropatias Amiloides Familiares/genética , Peptídeos beta-Amiloides/genética , Ácido Aspártico/química , Benzotiazóis , Ácido Glutâmico/química , Humanos , Cinética , Leucina/química , Lisina/química , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fenilalanina/química , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Tiazóis/química , Difração de Raios X
19.
Proc Natl Acad Sci U S A ; 105(47): 18349-54, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19015532

RESUMO

We describe a full structural model for amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)), based on numerous constraints from solid state NMR and electron microscopy. This model applies specifically to fibrils with a periodically twisted morphology, with twist period equal to 120 +/- 20 nm (defined as the distance between apparent minima in fibril width in negatively stained transmission electron microscope images). The structure has threefold symmetry about the fibril growth axis, implied by mass-per-length data and the observation of a single set of (13)C NMR signals. Comparison with a previously reported model for Abeta(1-40) fibrils with a qualitatively different, striated ribbon morphology reveals the molecular basis for polymorphism. At the molecular level, the 2 Abeta(1-40) fibril morphologies differ in overall symmetry (twofold vs. threefold), the conformation of non-beta-strand segments, and certain quaternary contacts. Both morphologies contain in-register parallel beta-sheets, constructed from nearly the same beta-strand segments. Because twisted and striated ribbon morphologies are also observed for amyloid fibrils formed by other polypeptides, such as the amylin peptide associated with type 2 diabetes, these structural variations may have general implications.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Polimorfismo Genético , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
20.
Biochemistry ; 47(13): 4000-7, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18324784

RESUMO

The [URE3] and [PSI (+)] prions of Saccharomyces cerevisiae are self-propagating amyloid forms of Ure2p and Sup35p, respectively. The Q/N-rich N-terminal domains of each protein are necessary and sufficient for the prion properties of these proteins, forming in each case their amyloid cores. Surprisingly, shuffling either prion domain, leaving amino acid content unchanged, does not abrogate the ability of the proteins to become prions. The discovery that the amino acid composition of a polypeptide, not the specific sequence order, determines prion capability seems contrary to the standard folding paradigm that amino acid sequence determines protein fold. The shuffleability of a prion domain further suggests that the beta-sheet structure is of the parallel in-register type, and indeed, the normal Ure2 and Sup35 prion domains have such a structure. We demonstrate that two shuffled Ure2 prion domains capable of being prions form parallel in-register beta-sheet structures, and our data indicate the same conclusion for a single shuffled Sup35 prion domain. This result confirms our inference that shuffleability indicates parallel in-register structure.


Assuntos
Amiloide/química , Príons/química , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Microscopia Eletrônica , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Príons/ultraestrutura , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA